

1. At $x = 0, y = \frac{1}{2}$. Differentiate twice w.r.t. $x. 2y' + (y + xy')\cos(xy) = 0 \& 2y'' - (y + xy')^2\sin(xy) + (2y' + xy'')\cos(xy) = 0 \implies \boxed{\frac{dy}{dx}\Big|_{(0,\frac{1}{2})} = -\frac{1}{4}} \& \boxed{\frac{d^2y}{dx^2}\Big|_{(0,\frac{1}{2})} = \frac{1}{4}}.$

2.
$$V = l^3 \implies \frac{dV}{dt} = 3l^2 \frac{dl}{dt} \implies \frac{dl}{dt}\Big|_{l=10} = \frac{1}{10} \text{ cm/sec}$$
. $S = 6l^2 \implies \frac{dS}{dt} = 12l\frac{dl}{dt} \implies \frac{dS}{dt}\Big|_{l=10} = 12 \text{ cm}^2/\text{ sec}$

- 3. Let $f(x) = \sqrt[3]{x}$ and $x_0 = 1$, then $f'(x) = \frac{1}{3}x^{-\frac{2}{3}}$ and $\Delta x = 0.03$. So, $\sqrt[3]{1.03} = f(1.03) \simeq f(1) + f'(1) \Delta x = 1 + \frac{1}{3}(0.03) = 1.01$.
- 4. $f'(x) = \cos x \sin x$. The critical number of f in $\left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$ is $x = \frac{5\pi}{4}$, when f'(x) = 0.

x	f(x)	Classification of x
$\frac{\pi}{2}$	1	end point
$\frac{5\pi}{4}$	$-\sqrt{2}$	critical number
$\frac{3\pi}{2}$	-1	end point

 $f\left(\frac{\pi}{2}\right) = 1$ is the absolute maximum of f in $\left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$,

- $f\left(\frac{5\pi}{4}\right) = -\sqrt{2}$ is the absolute minimum of f in $\left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$.
- 5. Suppose that a and b are two different real roots of the equation (a < b, say). Let $f(x) = x^7 + 4x^3 + x 2$ and consider the interval [a, b]. Since f is a polynomial, then f is continuous on [a, b] and differentiable on $(a, b) \cdot f'(x) = 7x^6 + 12x^2 + 1$. Since a, b are roots of f, then f(a) = 0 = f(b). From Rolle's Theorem, $\exists c \in (a, b)$ such that f'(c) = 0, but $f'(c) = 7c^6 + 12c^2 + 1 > 0$. Thus, f cannot have two different real roots.

6. Domain $f = \mathbb{R} - \{0\}$. The point (-3,0) lies on the curve. $f'(x) = \frac{18}{100}$

 $f'(x) = \frac{x^2 - 9}{x^2} \&$

$$f''(x) = \frac{18}{x^3}$$

(a) The critical numbers of f are x = -3 and x = 3, when f'(x) = 0. At x = 0, f' does not exist.

Ι	$(-\infty,-3)$	(-3,0)	(0,3)	$(3,\infty)$
sign of $f'(x)$	+	_	—	+
Conclusion		\searrow	\searrow	\nearrow

f is increasing on $(-\infty, -3)$ and $(3, \infty)$. f is decreasing on (-3, 0) and (0, 3). f (-3) = 0 is a local maximum of f. f (3) = 12 is a local minimum of f.

	Ι	$(-\infty,0)$	$(0,\infty)$	1
(b) $f''(0)$ does not exist.	sign of $f''(x)$	—	+	. (c)
	Concavity	CD	CU	